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1 INTRODUCTION 

1.1 THE VULNERABILITY FRAMEWORK 

In the assessment of climate change effects the most widely used methodological framework is the 

Climate Impact and Vulnerability Assessment Scheme (CIVAS) also used by the Intergovernmental 

Panel on Climate Change (IPCC, PARRY and CARTER 1998, CARTER et al. 2007, IPCC 2007, CLAVIER 

project). According to this framework, vulnerability to climate change is the degree to which 

geophysical, biological and socio-economic systems are susceptible to, and unable to cope with the 

adverse impacts of climate change. The vulnerability of an object is determined by the potential 

impact of climate change and by the object’s capacity for adaptation (also termed adaptive capacity) 

to the changing geophysical, biological and socio-economic conditions. Potential impact is further 

determined by the exposure of the object to climate change, as well as by its sensitivity (Figure 1, Tab 

1.). This framework can be applied to any object exposed to climate change. In our case, the objects 

are natural and semi-natural ecosystems (habitat types), which are self-organizing systems with 

several relevant physical and biological properties determining their sensitivity, as well as adaptive 

capacity. These physical dependencies enable us to explore the climatic vulnerability of ecosystems 

using a modelling approach (CZÚCZ et al. 2009, 2011). 

 

 

Figure 1. The Climate Impact and Vulnerability Assessment Scheme (CLAVIER project) 
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Table 1. Key concepts of the Climate Impact and Vulnerability Assessment Scheme and their equivalents in our analysis 
of climate sensitivity of natural and semi-natural habitats 

Concept IPCC definition Our customized definition 

Exposure, E 
“The nature and degree to which a 
system is exposed to significant climatic 
variations” (IPCC 2001) 

Exposure (of natural habitats to climate) is 
the projected degree of change in the 
bioclimatic variables at a given location for 
a specific time horizon. (multidimensional, 
depending on location and time horizon) 

Sensitivity, S 

“Sensitivity is the degree to which a 
system is affected, either adversely or 
beneficially, by climate variability or 
change. The effect may be direct (…) or 
indirect (…).” (IPCC 2007) 

We define climate sensitivity of a habitat 
as the multidimensional gradient of its 
modelled “response surface” to the 
studied bioclimatic factors (with all other 
abiotic factors held constant). 
(multidmensional, depending on habitat 
type) 

Potential 

impact, PI 

“All impacts that may occur given a 
projected change in climate, without 
considering adaptation” (IPCC 2007) 

Potential impact is expressed by the 
difference of predicted probabilities of 
presence given the climate of the 
reference period and under climate 
change scenarios within current locations 
of the habitat. (unidimensional, depending 
on habitat type, location and time horizon) 

Adaptive 

capacity, AC 

“The ability of a system to adjust to 
climate change (including climate 
variability and extremes) to moderate 
potential damages, to take advantage of 
opportunities, or to cope with the 
consequences” (IPCC 2007) 

We define adaptive capacity as the 
capacity of the location and the landscape 
context to support successful adaptive 
processes (local resilience, refuge-based 
adaptation, migration-based adaptation) 
for the studied habitat 

Vulnerability 

V 

“Vulnerability is the degree to which a 
system is susceptible to and unable to 
cope with adverse effects of climate 
change, including climate variability and 
extremes. Vulnerability is a function of 
the character, magnitude, and rate of 
climate change and variation to which a 
system is exposed, its sensitivity, and its 
adaptive capacity.” (IPCC 2007) 

To assess vulnerability we combine the 
outputs of potential impact and adaptive 
capacity analyses. 
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1.2 SCIENTIFIC CONTEXT 

Environment based vegetation models have a long history (FRANKLIN 1995). One of the main aims was 

explaining why certain vegetation types occur where they can be found (e.g. MILLER and FRANKLIN 

2002, SOMODI et al. 2010). Predictive models share the basic idea of deducing determinants of the 

studied phenomenon from existing occurrences, building statistical models on these and being useful 

for inter- and extrapolation. In principle, this means the formalisation of the requirements of natural 

vegetation types, which are aggregated here as natural habitats, representing a characteristic 

functional typology of terrestrial ecosystems. Predictive distribution models for natural habitat types 

can therefore assist the determination of climate sensitivity (by modelling the dependency of the 

different habitat types on the various climatic factors) and potential impact (by applying the models 

to future climate scenarios).  

Hungary is in a special position in this aspect, since there is a unique national vegetation map and 

database, which makes fine scale predictive distribution modelling of the different habitat types 

feasible. The Landscape Ecological Vegetation Database & Map of Hungary (MÉTA) contains a 

proportional cover spectrum for each of the main vegetation types per 35 ha units in the country 

(MOLNÁR et al. 2007, HORVÁTH et al. 2008), which is an ideal base for modelling.  

As for the different modelling techniques, tree-based models were found useful in discovering 

relationships with the phenomenon using many variables, while GLM-based methods were successful 

in predictive mapping (extra-, interpolation). Nevertheless, GLMs are very restrictive about the data 

structure (MCCULLAGH and NELDER 1989). Recently, new methods have arisen, which make the 

previously separate approaches virtually equivalent in statistical characteristics as well: Random 

Forests (BREIMAN 2001) and Gradient Boosting Models (GBM; FRIEDMAN 2002, ELITH et al. 2008). While 

random forests are still criticised for their variable selection methods (STROBL et al. 2007), GBM offers 

cross-validation-based variable selection (ELITH et al. 2008), opposed to the much criticised (e.g. 

LUKACS et al. 2010) Akaike Information Criterion (AIC) based option of the GLMs. Besides, it also 

allows a wide range of response curve shapes, which makes it flexible in handling variables from 

different sources (e.g. soil vs. climatic variables). 

1.3 GOALS OF THIS ASSESSMENT 

The most important goal of this study was to perform a detailed climatic vulnerability assessment on 

the most important and climate-sensitive natural and semi-natural habitats of Hungary. Our 

secondary goal was to provide a good example on how the CIVAS framework can be operationalized 

in sectoral climate impact studies. Both goals were achieved by determining and quantifying the 

elements of the CIVAS framework for the climate sensitive natural habitats (CSH) in Hungary.  

The first step in this assessment is the determination of climate sensitivity and the selection of 

the most climate sensitive habitats. We defined climate sensitivity as the degree of dependence on 

climate-related abiotic factors. Thus the determination of climate sensitivity was carried out through 

formalisation of the abiotic requirements of natural habitats. Therefore our aim was to construct 

statistical models for formalisation. 
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As the planned CIVAS framework is only relevant and applicable for habitat types that are 

sensitive to climate change, we used the results of this formalization to select those habitat types 

which are highly sensitive to climate change, which we will work on throughout the CIVAS 

framework. As a second step, potential impact of climate change was determined for the selected 

CSH habitat types at their current locations. 

To determine the adaptive capacity of the selected CSH we applied the conceptual model 

described by CZÚCZ et al. (2011). Accordingly we quantified three indicators for each habitat type and 

each location: 

 The naturalness of the habitat at the current locations 

 The diversity of the landscape surrounding the current location 

 The landscape pattern of the current stands of the CSHs to estimate adaptation by 

migration 

Finally, we created a demonstrative example for the combination PI and AC to assess the landscape-

level aggregated climatic vulnerability of natural ecosystems.  
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2 METHODS AND APPROACHES 

2.1 BIOCLIMATIC MODELLING 

Bioclimatic modelling basically relies on finding statistical relationships between vegetation 

observations and abiotic conditions. Thus, data originates from two sources: vegetation observations 

and maps of the abiotic background. 

Vegetation data in this project originated from the Landscape Ecological Vegetation Database & 

Map of Hungary (MÉTA; HORVÁTH et al. 2008, MOLNÁR et al. 2007). This database contains field-based 

cover estimations for 86 main vegetation types in 35 ha hexagonal grid cells covering the entire 

country (Fig 2). Vegetation is classified in the MÉTA at the habitat level, i.e. at a level coarser than 

phytosociological plant associations, but finer than formations (A-NER 2003; MOLNÁR et al. 2007, 

MOLNÁR et al. 2008, BÖLÖNI et al. 2011). Both primary and secondary vegetation is included in the 

database, as well as seral and climax vegetation types. Since our ultimate current goal is to estimate 

vulnerability to climate change, we chose habitat types that are considered as stabile under stabile 

climate conditions, i.e represent climax and subclimax vegetation, rather than transient types in a 

succession series (Table 2). A few closely related vegetation types were merged, as a posteriori 

expert evaluation of the mapping found that field mappers were likely not discriminating between 

them appropriately. For further information on the habitats please consult MOLNÁR et al. (2007) and 

BÖLÖNI et al. (2011); www.novenyzetiterkep.hu also contains exhaustive information on the field 

mapping and habitats.  

Presence-absence information of the habitat occurrences were used for the modelling purpose. 

Habitats extremely rare in Hungary (< 100 presences, for example raised bogs) were excluded even if 

they represent climax stage, since their limited occurrence cannot give sufficient information on their 

environmental preferences. Since mapping has been carried out with extensive field work, habitat 

absence information is also reliable. However, current absence of a habitat can be both due to the 

environment being unsuitable to the habitat (our interest) and due to human activities having 

removed it. Although, we could not fully eliminate this source of uncertainty, we tried to reduce it by 

excluding those spatial units from the training data that did not contain any undisturbed vegetation 

in the MÉTA database. In these hexagons human activities have removed all natural vegetation, thus 

here absence is clearly not reflecting the requirements of habitats. The MÉTA database contains 

altogether 267813 hexagons, out of which 87830 have been retained after this screening. 
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Figure 2. The coverage of Hungary by the MÉTA hexagon lattice. Projection used: World Geodetic System 1984 (WGS 84), 

the figure was prepared in ArcGIS 10.1 

 

 

Table 2. Names and abbreviations of the habitats modelled  

B1a Eu- and mesotrophic reed and Typha beds 

B1b Oligotrophic reed and Typha beds of fens, floating fens 

B4 Tussock sedge communities 

B6 Salt marshes 

F1a Artemisia salt steppes 

F2 Salt meadows 

F4 Dense and tall Puccinellia swards (alkaline vegetation) 

F5 Annual salt pioneer swards of steppes and lakes 

G1 Open sand steppes 

G2 Calcareous open rocky grasslands 

G3 Siliceous open rocky grasslands 

H1 Closed rocky grasslands, species rich Bromus pannonicus grasslands 

H2 Calcareous rocky steppes 

H3a Slope steppes on stony ground 

H4 Forest steppe meadows 

H5a Closed steppes on loess, clay, tufa 
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 Table 2 continued. Names and abbreviations of the habitats modelled  

H5b Closed sand steppes 

J1a Willow mire shrubs 

J2 Alder and ash swamp woodlands 

J3_J4 Riverine willow shrubs and willow-poplar woodlands 

J5 Riverine ash-alder woodlands 

J6 Riverine oak-elm-ash woodlands 

K1a_K2_K7b Oak - hornbeam woodlands 

K5_K7a Beech woodlands 

L1_M1 Downy oak woodlands 

L2a_L2b Turkey oak woodlands 

L2x_M2 
Closed mixed steppe oak woodlands on foothills and open steppe oak 
forests on loess 

L4a_L4b Acidofrequent oak woodlands 

L5 Closed lowland steppe oak woodlands 

LY1 Forests of ravines (mesic rocky forests rich in Acer pseudoplatanus) 

LY2 Mixed forests of slopes and screes 

LY3 Limestone beech forests 

LY4 Mixed relic oak forests on rocks 

M3 Open salt steppe oak woodlands with openings 

M4 Open sand steppe oak woodlands with openings 

M5 Poplar-juniper steppe woodlands 

M6 Continental deciduous steppe thickets 

M7 Continental deciduous rocky thickets 

N13 Acidofrequent coniferous forests 

 

All habitat models were developed using the same set of climatic variables originating from the 

CarpatClim-Hu database through the NAGiS project (Tab 3). CarpatClim-Hu contains entire Hungary 

within its domain, otherwise it is similar to the CarpatClim database (SZALAI et al. 2013). Climate 

variables were supplied in ~10 km (0.1°) spatial and daily temporal resolution. The fine temporal 

resolution was unnecessary for vegetation modelling, therefore daily temperature and precipitation 

data were aggregated into monthly averages (in case of temperature) and monthly sums (in case of 

precipitation) over 30-year time periods. This time period was determined by the length of modelled 

climate data for the future. 

Bias correction of predicted future climatic data was done on a monthly base. The difference (in 

case of temperature) and the quotient (in case of precipitation) of the predicted and observed 

climate in the period of 1961–1990 was calculated as bias term. Then the predicted future climate 

was corrected by these bias terms (delta change method). The reference period of the ecological 

model was set to 1977–2006, so as to fit best the vegetation data, which has been collected between 
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2004 and 2006. On the other hand, the spatial resolution was too coarse for vegetation modelling, 

therefore downscaling was applied. 

There are two main methods available: statistical and dynamic downscaling. Since dynamic 

downscaling is highly compute-intensive method and needs a high amount of expert decision, we 

selected a statistical downscaling (spatial interpolation) approach. 

Several methods are developed that are able to achieve statistical downscaling, including basic 

statistical methods (e.g. General Linear Model (GLM)), deterministic interpolations (e.g. Thin Plate 

Spline (TPS), Inverse Distance Weighted (IDW), Nearest Neighbour (NN), Voronoi cells or Thiessen 

polygons), geostatistical methods (kriging), simple and advanced tree-based classification/regression 

methods (e.g. Random Forest (RF), Gradient Boosting Model (GBM)) and some type of artificial 

intelligence (AI) methods (e.g. Artificial Neural Networks (ANN)). Detailed enumeration and 

comparison of the interpolation techniques can be found in HARTKAMP et al. 1999, SLUITER 2008, Li 

and Heap 2014. In most of the cases of building calibration/evaluation database for ecological 

models, simple interpolation (e.g. inverse distance weighting, IDW) is done when a finer resolution 

dataset is needed. Simple interpolators are, however, not able to use auxiliary variables, calculate 

uncertainty and so on. The precision with which a variable, i.e. climate surface in our case, is 

estimated may be improved by using auxiliary variables (KNOTTERS et al. 1995). 

In our study, regression kriging was used with linear model. Kriging (KRIGE 1966) is widely used 

for interpolating long-term precipitation and temperature data (e.g. TABIOS and SALAS 1985, HEVESI et 

al. 1992, HOLDAWAY 1996, DRYAS and USTRNUL 2007). Regression kriging is also widely used in 

meteorology (GOOVAERTS 1999, 2000, TVEITO et al. 2006, WU and LI 2013). 

The spatial interpolation methods differ in their assumptions, local or global perspective, and 

deterministic or stochastic nature (LAM 1983, LUO et al. 2008). In contrast to deterministic methods, 

kriging provides a solution to the problem of estimation of the surface by taking account of the 

spatial correlation (LUO et al. 2008). Kriging is an exact, non-convex, linear, stochastic and local (in 

some case with global trend) interpolator, that produce a gradual surface (HARTKAMP et al. 1999, LI 

and HEAP 2014). Although some types of kriging are univariate, regression kriging is multivariate since 

it uses auxiliary variables (LI and HEAP 2014). Kriging is a stochastic technique similar to IDW in that it 

uses a linear combination of weights at known points to estimate the value at an unknown point 

(COLLINS 1995, LUO et al. 2008).  

Regression kriging has advantages (can use a known and physically interpretable relationship 

between the target variable and the auxiliary variable) and disadvantages (assumptions about the 

error term) as well in contrast to other kriging methods, especially ordinary kriging (Knotters et al. 

1995). In case of regression kriging (aka. residual kriging, detrended kriging, kriging with external drift 

(KED)) the drift or trend is estimated by a regression/detrending function (HOLDAWAY 1996), i.e. linear 

regression in our study. Although regression kriging and KED are mathematically equivalent to each 

other, the main difference is that the latter uses secondary variables directly to solve the kriging 

weights, instead of using simple kriging (SK) on the residuals of a previous regression (HENGL et al. 

2007, LI and HEAP 2014) 

Three auxiliary variables were used in our study. Linear regression of all of the 5×48 monthly 

climate data (precipitation, minimum, maximum and mean temperature of the months of the year 
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averaged over the thirty-years periods) was built with altitude, latitude and longitude as covariates. 

Statistical significance of the covariates and the overall model, and the coefficient of determination 

of the model were computed. Based on the computed experimental semivariogram an initial 

semivariogram model was built with fixed sill, nugget and range values. Nugget was adjusted to be 0, 

partial sill (and sill) is the mean of the semivariance found by the experimental semivariogram, and 

range was set to be the one eighth of the study window. Then an exponential semivariogram model 

was fitted with variable sill, nugget and range values.  

Following the preparation of high spatial resolution climate surfaces, seasonal averages of mean 

temperatures, seasonal sums of precipitation and 19 bioclimatic variables were calculated according 

to the WORLDCLIM protocol (HIJMANS et al. 2005). Variables describing soil conditions originate from 

the Digital, Optimized, Soil Related Maps and Information in Hungary (DOSoReMI) (PÁSZTOR et al. 

2015). Distances to water bodies refer to the distance of the hexagon centre. Some soil descriptors 

(Svac, Sac, Sne, Sal, Sval – see Tab 3. for explanation of the abbreviations) were encoded logical (two-

state categorical), all other variables are continuous. To assess the variability of the terrain we 

calculated several topographic indices based on the Digital Terrain Model. In total, 26 soil, 9 

hydrological, 6 topographic, and 27 climatic parameters were generated as an initial predictor set. 

The explanatory variables used for all models have been selected from the above list. The 

reduction was based on the inspection of individual variable effects and the correlation structure so 

as to keep the absolute value of pairwise correlation at maximum 0.8, the total Condition Number 

(CN) of the predictor set at maximum 30 (DORMANN et al. 2013), and the Variance Inflation Factor 

(VIF) of the variables at maximum 50. While a stricter condition has been suggested earlier, i.e. 

setting at maximum 10, see BELSLEY (1991), HAIR et al. (1995), newer literature suggest less strict rules 

regarding VIF, while keeping CN<30 (O’BRIEN 2007, CHENNAMANENI et al. 2016). Pairwise relationships 

of the variables were tested with Pearson correlation. The variables remaining after the selection 

process are listed in detail in Tab 3. 
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Table 3. Explanatory variables used in the analysis 

Variable 
name 

Description Source/calculations 

Bioclimatic variables  

BIO3 Isothermality (Ratio of Mean Diurnal Range and 
Temperature Annual Range) 

CarpatClim-Hu and NAGiS 

BIO4 Temperature Seasonality (standard deviation *100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Minimum Temperature of the Coldest Month 

BIO15 Precipitation Seasonality 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter  

Soil characteristics  

Svac Presence of very acidic (pH < 5.6) soil within a hexagon  DOSoReMI 

Sac Presence of acidic (pH in 5.6–6.6) soil within a hexagon  

Sne Presence of neutral (pH in 6.6–7.6) soil within a hexagon  

Sal Presence of alkaline (pH in 7.6–8.6) soil within a hexagon 

Sval Presence of very alkaline (pH > 8.6) soil within a hexagon 

Ssa Maximum of sand fraction ratio of the top (0–30 cm) soil 
layer within a hexagon  

Scl Maximum of clay fraction ratio of the top (0–30 cm) soil 
layer within a hexagon  

Soc Mean organic matter content within a hexagon 

Sda Mean depth of ground water level within a hexagon 

Srn Minimum of rooting depth within a hexagon 

Srx Maximum of rooting depth within a hexagon  

Hydrology  

Dla Distance to the closest lake Digitized vector layers 

Dri Distance to the closest river 

Dst Distance to the closest stream 

Dca Distance to the closest canal 

Dnw Distance to the closest non-built (natural) water body of 
any type (lake, river, stream) 

Dwa Distance to the closest water body of any type (lake, river, 
stream, canal)  

Topography  

TPI Standard deviation of the Topographic Position Index (TPI) 
within a hexagon 

Digital Elevation Model 
from NAGiS 
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Presence-absence of each habitat considered was related to the explanatory variables with the 

help of Gradient Boosting Models (GBMs) in the R statistical environment (R Development Core 

Team 2013) using the gbm package (RIDGEWAY 2015). We chose GBMs because they are flexible 

regarding response curves, decide on explanatory variables retained in the model based on cross-

validations rather than the much criticised Akaike Information Criterion (AIC) and proved to be 

reliable from several aspects in ecological modelling (BÜHLMANN and HOTHORN 2007, ELITH et al. 2006). 

In our calculations, we followed the analysis sequence described in ELITH et al. (2008) and used 

the code they supplied with their paper with a few changes. One of these was that the high amount 

of data allowed us to first split the data for each habitat randomly into training and evaluation 

datasets and build the GBMs using the former only. The splitting was stratified for prevalence; i.e 

equal presence/absence ratio was insured in the two datasets. Personal experience also made us set 

two other parameters differently from the original suggestions: the tree complexity to 3 and the bag 

fraction to 0.5. Since the optimal learning rate (a third parameter to be specified manually for GBMs) 

depends on prevalence we set this to different levels according to the ratio of presences applying to 

the different habitats. Thus we selected learning rates between 0.008 and 0.1 automatically based on 

prevalence – a range appearing also reasonable in ELITH et al.'s (2008) experiments, but more 

importantly this way we achieved a number of trees per model between 1000 and 10 000 (the mean 

of the number of trees across models was 4800). This also complies with ELITH'S et al.'s (2008) 

warning that the number of trees per model should be above 1000. Learning rates were 

increased/decreased iteratively and the models were rebuilt with new learning rates in case of too 

high / too low number of trees. 

Models were also simplified, i.e. unimportant variables were dropped from the model using 

methods analogous to backward selection in GLM. Here we also followed ELITH et al. (2008). Model 

performance was assessed by the well-established Area Under the Receiver Operating Characteristic 

(ROC) Curve (AUC, SWETS 1988). The ROC curve relies on the inspection of contingency table of 

matches between predticted presences and absences vs. observed presences and absences at any 

possible cutpoints along the probability values of the predictions (Table 4, Figure 3). The higher the 

curve runs in the coordinate system defined by the True Positive Rate (TP/TP+FP) and 1-False Postivie 

Rate (1-(FP/(FP+FN)) the better the prediction is. Therefore a higher Area Under the ROC curve (AUC) 

represent a better prediction and thus a better underlying model. 

For climate sensitivity assessment we used both the variable structure directly as well as the 

relative variable importance supplied by the GBM.  

 

Table 4. Confusion matrix of matches and mismatches of  
prediction and observations  

TPR = TP/(TP+FN); FPR = FP/(FP+FN). 
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 1 0 

1 True positive-TP False Positive- FP 

0 False Negative- FN True Negative-TN 
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Figure 3. The ROC curve for two extreme and a realistic settings.  
“Perfect” – predicted probabilities exactly match orbservations, 

 “random” – predictions no better than in the random case, 
 “realistic” – one actual case from the practice. For TPR and FPR consult Table 4 

 

2.2 LANDSCAPE ECOLOGICAL ANALYSIS 

The adaptive capacity (AC) of habitats to climate change can be estimated from the landscape 

structure they are embedded in. Thus the estimation of AC is carried out through landscape 

ecological analysis. According to the IPCC definition, adaptation is ‘the ability of a system to adjust to 

climate change (including climate variability and extremes) to moderate potential damages, to take 

advantage of opportunities, or to cope with the consequences’ (IPCC 2007, Glossary). In the case of 

ecosystems, adaptation is predominantly autonomous adaptation, which ‘does not constitute a 

conscious response to climatic stimuli but is triggered by ecological changes’ (IPCC 2007, Glossary). 

Consequently, adaptation includes not only genetic evolutionary adaptation, but also any systemic 

adjustment processes: local resilience, refugium-based adaptation and migration-based adaptation 

(CZÚCZ et al. 2011). 

Due to the lack of species-level data at such a wide range of habitats as well as due to the 

theoretical complexity of integrating them (even if they were at hand) at so large numbers as they 

occur in natural habitats, we excluded the investigation of genetic adaptation capacity. However, we 

included the other three mechanisms of adaptation.  

Local resilience is best estimated by the naturalness of the landscape (COOK 2002, CZÚCZ et al. 

2012), from which we choose the Natural Capital Index. Natural Capital Index is expressed as the 

product of ecosystem quality and quantity (Figure 4) 
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NCI = ecosystem quality × ecosystem quantity = q.a 

 

 

Figure 4. A geometric representation of the Natural Capital Index 

Refuge-based adaptation is the more successful the more heterogeneity of the landscape is 

present, therefore this aspect is quantified by diversity indices (CZÚCZ et al. 2011). We choose the 

widespread Shannon-diversity to quantify this aspect. Habitat frequencies within a NAGIS square 

were used as input, thus resulting in an estimate of habitat diversity of the square. 

Migration-based adaptation relies on the quantification of the connectivity of the landscape. 

There is a wide variety of landscape connectivity assessment options. A major dichotomy exists along 

whether the indices reflect structural or functional features of the landscape. Among the former, 

several measures are based on the presence of corridors, others on distances, on graph theory also 

accounting for transversability. There are measures based on the amount of habitat in the landscape, 

too, which can also be extrapolated towards percolation-related measures. Connectivity indices 

reflecting functional aspects of the landscape often rely on the probability of moving and use matrix 

permeability as well (KINDLMANN and BUREL 2008). 

As our study involves habitats, rather than individual organisms, functional connectivity indices 

would not be appropriate. The many constituting species likely have different functional 

requirements, e.g. matrix permeability. On the other hand the structural aspect of connectivity can 

be useful because the proximity of similar patches, the presence of corridors and other landscape 

elements can enhance the migration of various constituent species of the habitat, even if to a 

different degree per species. Therefore we quantified the migration-based AC by an index based on 

Euclidean distance (Czúcz et al. 2011) accommodated to presence-absence data.   

 

where Ci is the landscape connectivity measured at hexagon i – or, more precisely, the contribution 

of hexagon i to the overall landscape connectivity, which also reflects the relative position 

(embeddedness, isolation) of patch I within the landscape network. Ci is measured as the frequency 

of patches of similar habitat type within the search distance from the focal patch weighted by an 

exponential distance kernel. Accordingly, D0 is a predetermined search distance, Dij is the distance of 

the nearby patch j from the focal patch (where Dij<D0). In the original fomrula Aj is the area of the 
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patch, however, as only use habitat presences this parameter is set to 1 in our case. α is an 

appropriately chosen dispersal parameter. The indicator can be fine-tuned with the help of this 

parameter, which should reflect the dispersal ability of the modelled species, or species groups. The 

search distance should be large enough to contain the bulk of the quickly decaying exponential 

kernel. Based on CZÚCZ et al. (2011) we set α to 0.5 km-1 and D0 to 1 km.  

Each of the three indices were rescaled into a 5-category oridnal scale. The first two were rescaled 

evenly between the minimum and maximum, the third was rescaled using the boundaries that 

emerged from the simulations of CZÚCZ et al. (2011). The maximum of these indices was taken as the 

AC of the habitat in question in a specific spatial unit (NAGIS square or settlement boundary). 

2.3 IDENTIFYING CLIMATE SENSITIVE HABITAT TYPES 

We used the bioclimatic models for the identification of climate sensitive habitat types. GBM models 

offer the possibility of automatic variable selection. Boosting makes the model structure equivalent 

whether it starts on classification and regression trees or generalised linear models. However, during 

boosting a full model including all the candidate explanatory variables is never built, but short 

trees/linear models are constructed. The final response curve of the modelled entity is constructed 

from a large number of such submodels. Variable selection in GBM relies on the frequency of 

explanatory variables in these trees in an iterative process (cross-validation). GBM provides an 

estimation of variable importance for variables remaining in the simplified models according to their 

loadings (i.e. their degree of inclusion into the submodels). This measure helps to assess how 

influential a variable is. Thus, relative importance can serve as an indicator of climate sensitivity. 

2.4 ASSESSING VULNERABILITY 

The first step to assess vulnerability is to quantify the potential impact (PI) of climate change on the 

distribution of the 12 climate sensitive habitats. PI was defined as the difference between the 

probability of potential presence of the habitat in the future and that in the reference period. To 

assess PI, the habitat models were applied to the current and future environmental settings given 

both time periods and climate models separately. Thus PI is available in four combinations for each 

of the habitats investigated (2 periods × 2 climate models). It ranges from –1 to 1 with –1–0 

representing positive impact of climate change on the habitat, while 0-1 represents negative 

potential impact. This representation was chosen so that the target of this study, the negative 

climate impact receives large values. PI was first calculated at the MÉTA hexagon level, then 

estimations were generalised both at the NAGIS pixel level, as well as for each settlement. In the 

course of generalisation the highest PI value assigned to a hexagon falling within the spatial unit was 

assigned to the spatial unit (NAGIS pixel or settlement). 

Vulnerability (V) depends both on PI and adaptive capacity (AC). The larger the PI is, the more 

vulnerable the habitat is. This can be mitigated with high AC. During our vulnerability analysis we 

concentrated on the detrimental effects of climate change only, therefore only positive PIs (high, 

unfavourable climate impact) were considered.  Thus we calculated the vulnerability of a single 

habitat as 



Vulnerability of natural habitats  25 April 2016 

 

NATIONAL ADAPTATION GEO-INFORMATION SYSTEM 19 

 

V = PI × (5–AC) 

multiplying any positive, but only positive values of PI by the “lack of adaptation capacity” defined as 

5–AC, so that high AC appears as 1 and lowest AC appears as 5. This ensured that lower AC leads to 

higher V. We assessed vulnerability at the spatial unit levels for the NAGIS database (NAGiS square or 

settlement boundary). For this value we took the highest value of habitat vulnerability within the 

spatial unit. Values were calculated separately for climate models and periods in the future. 
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3 RESULTS AND DISCUSSION 

3.1 INTERPOLATED CLIMATE SURFACES 

The first results are climate surface interpolations (Figures 5–8). In comparison with the original 

CarpatClim-Hu data the interpolated surfaces are smoother; however some outliers are not 

captured. Such outliers are more common in the case of temperatures (Figures 5–6) and within that 

dataset in winter months (e.g. Figure 5). Nonetheless, the interpolation appears successful in general 

and was therefore further used in the modelling. 

 

 

Figure 5. Comparison of CarpatClim-Hu data and interpolation by regression kriging. Average temperature 1977–2006, 
January. Projection used: World Geodetic System 1984 (WGS 84), the figure was prepared in Quantum GIS 2.10 software 
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Figure 6. Comparison of CarpatClim-Hu data and interpolation by regression kriging. Average temperature 1977–2006, 
May. Projection used: World Geodetic System 1984 (WGS 84), the figure was prepared in Quantum GIS 2.10 software 

 

 

Figure 7. Comparison of CarpatClim-Hu data and interpolation by regression kriging. Mean monthly precipitation 1977–
2006, January. Projection used: World Geodetic System 1984 (WGS 84), the figure was prepared in Quantum GIS 2.10 

software 
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Figure 8. Comparison of CarpatClim-Hu data and interpolation by regression kriging. Mean monthly precipitation 1977–
2006, May. Projection used: World Geodetic System 1984 (WGS 84), the figure was prepared in Quantum GIS 2.10 

software 

 

3.2 CLIMATE SENSITIVE HABITAT TYPES 

According to the AUC measure, our models performed excellent (Tab. 5, see Swets 1988). Only the 

model of tussock sedge communities (B4; 0.83) and continental deciduous steppe thickets (M6; 0.89) 

performed lower than 0.9 AUC. The mean AUC was 0.95 across models. Consequently, we can be 

confident in interpreting our models. 

Based on the relative importance of climate related variables compared to other variables 

retained in the simplified models (Table 6), the twelve most climate sensitive habitats (CSH) are 

mixed coniferous forests (N13), mixed forests of slopes and screes (LY2), annual salt pioneer swards 

of steppes and lakes (F5), beech woodlands (K5_K7a), oligotrophic reed and Typha beds of fens & 

floating fens (B1b), closed lowland steppe oak woodlands (L5), closed steppes on loess, clay, tufa 

(H5a), steppe oak woodlands on foothills and on loess (L2x_M2), Turkey oak woodlands (L2a_L2b), 

forest steppe meadows (H4), willow mire shrubs (J1a), and oak-hornbeam woodlands (K1a_K2_K7b). 

In all of these, the relative importance of climate variables were at least 55% of all variable 

importance (100%). We conduct the further analysis using these habitats. All further figures have 

been plotted in the R statistical environment using the Hungarian Unified National Projection (EOV; 

EPSG Spatial Reference System Identifier: 23700). 
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Table 5. Model performance according to the  
Area Under the ROC Curve (AUC) measure (see also Figure 2) 

Habitats AUC 

B1a 0.908655 

B1b 0.957458 

B4 0.825739 

B6 0.951257 

F1a 0.975977 

F2 0.976988 

F4 0.961804 

F5 0.954928 

G1 0.978997 

G2 0.97248 

G3 0.955517 

H1 0.933013 

H2 0.977884 

H3a 0.953303 

H4 0.932601 

H5a 0.930552 

H5b 0.973943 

J1a 0.918826 

J2 0.920672 

J5 0.948344 

J6 0.964838 

L5 0.978275 

LY1 0.949829 

LY2 0.953719 

LY3 0.981422 

LY4 0.972972 

M3 0.956832 

M4 0.942875 

M5 0.979099 

M6 0.888373 

M7 0.946805 

N13 0.993994 

J3_J4 0.986159 

K1a_K2_K7b 0.951151 

K2_K7b 0.959395 

K5_K7a 0.972385 

L1_M1 0.962648 

L2a_L2b 0.950084 

L2x_M2 0.954412 

L4a_L4b 0.953398 
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Table 6. Modelled habitats ordered according to the relative importance of climate predictors in their models. Number 
and relative frequency of climate predictors are also shown. Habitats selected for further analysis are typed bold 

 

All 7 climate predictors were included in the final models of K5_K7a, L5, H5a, L2x_M2, L2a_L2b, H4, 

and K1a_K2_K7b. The model of B1b and J1a lacks one climate predictor only: isothermality and 

Habitat codes 
No. of climate 
variables 

Frequency of climate 
variables 

Relative importance of climate 
variables 

N13 2 1 1 

LY2 2 0.67 0.75 

F5 4 0.67 0.67 

K5_K7a 7 0.44 0.62 

B1b 6 0.6 0.61 

L5 7 0.5 0.6 

H5a 7 0.41 0.6 

L2x_M2 7 0.47 0.6 

L2a_L2b 7 0.44 0.59 

H4 7 0.47 0.58 

J1a 6 0.46 0.58 

K1a_K2_K7b 7 0.47 0.55 

J6 7 0.58 0.54 

M7 1 0.5 0.53 

LY4 6 0.5 0.53 

F2 6 0.46 0.52 

F1a 5 0.5 0.52 

J5 7 0.5 0.52 

B6 6 0.4 0.52 

F4 5 0.5 0.52 

J2 6 0.5 0.51 

M6 4 0.44 0.5 

B4 3 0.43 0.49 

H2 6 0.4 0.47 

LY3 4 0.5 0.46 

K2_K7b 7 0.41 0.42 

G2 3 0.38 0.42 

L1_M1 7 0.47 0.41 

L4a_L4b 5 0.38 0.39 

H3a 5 0.42 0.39 

G3 3 0.43 0.37 

M5 3 0.38 0.34 

B1a 6 0.33 0.31 

H5b 6 0.43 0.31 

J3_J4 7 0.5 0.3 

LY1 2 0.4 0.29 

G1 6 0.43 0.28 

M3 1 0.14 0.17 

H1 0 0 0 

M4 0 0 0 
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precipitation of the coldest quarter, respectively. F5 has four climate predictors, while N13 and LY2 

have 2 climate predictors. The model of LY2 includes one non-climatic predictor only (TPI), while the 

model of N13 is completely climate dependent. Both of the latter models include the “precipitation of 

coldest quarter” variable. Table 7 provides the relative importance of explanatory variables for the 

habitats selected for further analyses.  

 

Table 7. Predictor structure and relative importance of explanatory variables in models  
of the most climate sensitive habitats 
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Svac             

Sac             

Sne             

Sal             

Sval             

Scl    1.3 7.7 5.8 5.4  2 6.4 4.9  

Ssa    2  4.5 5  4.7 4 8.8 3.1 

Soc    2.1 14.3  5.9 4.2 2.7  7.2 1.6 

Srn   24.5 0.8  5.5 3.1 3.5 3.2 6 4.8 2.5 

Srx    1.2  7.7 2.7 3.1 3.9 4.3 3.8 3.5 

Sda    1.1  5.5 4.4 5.9 12 8.1  2.4 

Dca    2.1 7.5  3.1 8.4 5 5  2.5 

Dri   8.8 1.3   4.1    8.7 2.2 

Dst       3      

Dla     9.1   3.1   4.1  

Dnw      2.9       

Dwa        5.7 2.6 3.4   

TPI  24.9  25.7  7.6 2.8 6.3 5.2 4.6  26.9 

BIO3    2.3  13.2 3.9 8.5 3.9 6.5 8.8 2.9 

BIO4   15.3 26.4 10.8 8.9 13 14.8 11.9 7.7 9.7 11.6 

BIO5  53 18.5 26 7.1 3.8 22.8 6.3 21.2 6.3 7.3 9.4 

BIO6   17.6 1.7 15.1 10.6 6.6 6.4 4.3 5.9 16.9 3.7 

BIO15   15.3 2.2 9.1 10.3 4.3 7 5.3 13.7 7.7 4.4 

BIO18 37.6   2 11.5 4.3 5.5 12.1 8.6 11.9 7.4 20.6 

BIO19 62.4 22.1  2.1 7.7 9.4 4.4 4.6 3.4 6.2  2.7 
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3.3 POTENTIAL IMPACT 

As expected the potential impact is predominantly negative on CSHs (Table 8). Forest types 

identified as CSHs are likely to be negatively affected (Figure 9). The exception is L5, where climate 

models highly disagree regarding the outcome. A similar pattern emerged for forest steppe meadows 

(H4). Results for these two habitats have to be handled with care therefore. The two wetland types 

are likely to benefit at least partially from climate change. The most likely reason for this is an 

increased winter precipitation with climate change. Loess steppes (H5a) also have the potential to 

benefit from climate change. A benefit is especially striking for annual saline vegetation (F5), which is 

in good accordance with its adaptation to soil salinity, typical for arid climates (Figure 10). 

PI estimations have been produced both for the NAGIS grid and settlements (for an example see 

Figure 11). The former have been delivered to the online system, the latter is given in Appendix 1.  
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Figure 9. Potential impact (PI) of climate change to existing stands of beech forests (K5_K7a) – aggregated for NAGIS 
squares. Subfigure titles refer to the climate model and the future period in relation to which PI was examined. 

Unfavourability of PI increases from green to red 
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Figure 10. Potential impact (PI) of climate change to existing stands of annual salt pioneer swards of steppes and lakes 
(F5) – aggregated for NAGIS squares. Subfigure titles refer to the climate model and the future period in relation to which 

PI was examined. Unfavourability of PI increases from green to red 
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Figure 11. Potential impact (PI) of climate change to existing stand of beech forests K5_K7a – aggregated for settlement 
boundaries. Subfigure titles refer to the climate model and the future period in relation to which PI was examined 
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Table 8. Potential impact (PI) of climate change on the most climate sensitive habitats. The table summarizes the spatial 
pattern of potential impact within the country. We also indicate if any conflict between predictions of climate models 

has been identified and if a change in trends was discernible between the two periods 

Period 21–50 71–50   

Climate model ALADIN-Climate RegCM ALADIN-Climate RegCM Conflict 
Trend 
change 

N13 Negative No No 

LY2 Negative No No 

F5 
positive or 
neutral 

mostly 
positive, 
sometimes 
negative 

positive or neutral No No 

K5_K7a Negative No No 

B1b 
negative at the edges, positive 
in the centre 

negative in the West, positive 
elsewhere 

No Yes 

L5 

Neutral or 
positive in the 
East, negative in 
the West 

Negative 
neutral, 
sometimes 
positive 

neutral or 
negative 

Yes 
Incon-
sistent 

H5a 

Variable, but 
positive in the 
East 

Variable, 
but 
negative in 
the East 

positive or neutral Yes 
Incon-
sistent 

L2x_M2 Negative No No 

L2a_L2b Negative, neutral in the South No No 

H4 
neutral or 
negative 

positive 

Positive in Central 
Hungary, neutral 
or negative 
elsewhere 

Variable, 
negative in 
Eastern 
Hungary 

Yes Yes 

J1a 

Negative in the East, 
neutral or positive in the 
centre 

positive or neutral No Yes 

K1a_K2_K7b Negative No No 

 

3.4 ADAPTIVE CAPACITY 

Many of the CSHs are zonal and widespread types and thus have relatively high AC, which has the 

potential to greatly mitigate the PI (Tab 9). Most widespread zonal habitats, such as oak-hornbeam 

woodlands (K1a_K2_K7b), beech woodlands (K5_K7a; Figure 12), and others which form larger blocks 

in the current landscape have high AC in the centre of the blocks, which decreases towards the edges 

and reaches low AC values. Turkey oak woodlands (L2a_L2b), however, are so widespread that this 

pattern does not apply to it and has high AC even at the edges of its current patches, which ensures 

the best AC among the CSHs (Figure 13). There are habitats with variable pattern, but typically 

medium to high AC: B1b, L5, H5a, H4, LY2. An important aspect of the AC of loess steppes (H5a) is 

that there is a high AC area in the South-east of Hungary, while its AC is low in the South-west (Fig 
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14). It is also worth to note that relatively lower AC areas of LY2 appear aggregated North to Lake 

Balaton and in the Mecsek Mountains, which points out areas likely to become vulnerable. In this 

analysis J1a appears to be one of the types that has the lowest AC overall, which coincides with its 

ecology. Willow shrubs typically appear in small depressions in the landscape surrounded by other 

vegetation or even agricultural land. So neither its connectivity nor characteristics of its surroundings 

(diversity, natural capital) predestine for high AC. L5 also has low AC values, which can be attributed 

to the fragmentedness of this type. Opposed to J1a, L5 would not be fragmented under natural 

conditions, but as it is a habitat of the lowlands it became a frequent victim of human landscape 

transformation. 

PI estimations have been produced both for the NAGIS grid and settlements (for an example see 

Fig. 15). The former have been delivered to the online system, the latter is given in Appendix 1.  

 

 

Figure 12. Adaptive Capacity (AC) of beech forests (K5_K7a) – aggregated for NAGIS squares. 
 AC increases from 0 to 4 (red to green). 
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Figure 13. Adaptive Capacity (AC) of turkey oak woodlands (L2a_L2b)– aggregated for NAGIS squares.  
AC increases from 0 to 4 (red to green) 

 

 

Figure 14. Adaptive Capacity (AC) of loess steppes (H5a) – aggregated for NAGIS squares. 
 AC increases from 0 to 4 (red to green). 
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Figure 15. Adaptive Capacity (AC) of beech forests (K5_K7a) – aggregated for settlement boundaries.  
AC increases from 0 to 4 (red to green) 

 

 

Table 9. Adaptive capacity (AC) pattern of climate sensitive habitats (CHS) within the country. A summary of spatial 
patterns visible in the maps resulting from the landscape analysis 

Habitat codes Adaptive capacity 
N13 high in the centre of its block, low at the edges 
LY2 medium North to Lake Balaton and Mecsek, high elsewhere 
F5 medium to high 
K5_K7a high in the centre of its block, low at the edges 
B1b medium to high 
L5 low to medium 
H5a high in southeast, low in southwest 

L2x_M2 
equal proportion of low an high AC locations - high AC at the foot of the Northern 
Medium Range 

L2a_L2b high 
H4 medium to high 
J1a medium 
K1a_K2_K7b high in the centre of its block, low at the edges 
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3.5 VULNERABILITY 

The most central part of a CIVAS assessment is quantifying the vulnerability. Vulnerability is 

essentially a (set of) high-level aggregated indicators, which establish a balanced information over all 

of the individual CIVAS components. The main goal of vulnerability is to give a quick but insightful 

overview of the assessment outcomes for decision makers, policy uses and the general public. As 

there are many valid possible policy and decision-making contexts, there is no single “default” 

aggregation formula or vulnerability indicator either. The construction of a vulnerability indicator and 

the resulting vulnerability map highly depends on the decisions taken during its construction, which 

should ideally be customized for a specific policy context and designed in a participatory process 

involving key stakeholders.  

In general, vulnerability is high if PI is large and AC is low. Such considerations can take the form 

of expert assessment as well. For example the PI is high for beech forests almost everywhere, but AC 

is also high in the middle of its blocks, thus beech forests in the centre of mountains are less 

vulnerable to climate change than those at the margins.  

The simple vulnerability index presented in this chapter is only one option, created for a general 

nature conservation planning context. As the rich PI and AC estimations available for each CSH made 

it possible, we first created a separate vulnerability indicator for each habitat type, which were 

aggregated into a single value using a maximum statistic. This unweighted statistic can be good for 

framing general policy discussions, but we encourage all users of our data sets to use custom 

weightings and aggregating strategies for PI and AC components tailored to their specific needs and 

the problem in focus.  

Our formalised example also demonstrates the uncertainties of climate projections due to 

differences in climate models. On the other hand, an agreement between the two models shows 

robust results. Although RegCM shows higher vulnerability in general, long-term (2071-2100) 

vulnerability of natural habitats is consistent given the two climate models (Fig. 16). Natural 

vegetation appears most vulnerable in Western Hungary and in the Northern Medium Mountains, as 

well as in the easternmost corner of Hungary. This is likely in connection with forests being the 

dominant natural vegetation. Models disagree, however, in the degree of short-term vulnerability. 

While ALADIN-Climate shows a similar overall pattern to the long-term the estimations, RegCM 

shows considerable differences. According to the short term estimations using RegCM, vulnerability 

is lower in central Transdanubia and higher in the South-East part of the Great Hungarian Plain than 

at the long term. Additionally, to the broader pattern we see an increased vulnerability South to Lake 

Balaton and in the North-western areas. South to Lake Balaton, there are closed forests at the edge 

of their environmental tolerance; therefore they are particularly vulnerable to climate change. 
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Figure 16. Overall climatic vulnerability of natural vegetation in Hungary. Subfigure titles refer to the climate model and 
the future period in relation to which vulnerability was examined. Vulnerability increases from green to red 
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4 CONCLUSIONS 

The analysis presented shows that the elements of the CIVAS framework can be effectively 

interpreted in and adapted to specific sectorial contexts. The specific solutions (components of AC, 

aggregation schemes, etc.) can be used as an orientation in further similar studies. Furthermore, the 

entire analysis can be re-used as an embedded part of a large multi-sectoral CIVAS assessment.  

The databases produced allow a wide range of applications. As most of the zonal habitats of 

Hungary can be found among the 12 selected climate sensitive habitats (CSH), our results give a 

reliable overview about the expected ecological impacts of climate change. As a general rule the 

modelled PI was predominantly negative for forested habitat types, but for grassland types we 

experienced at least partially positive predicted responses in most of the cases. This result is 

congruent with the expectation that Hungary, lying roughly at the biogeographic boundary between 

forest and steppe zones, should experience a shift towards more open habitat types. Furthermore, 

the natural vegetation of mountainous areas, predominantly forests, appears to be more vulnerable 

than that of the lowlands. This foreshadows that maintaining forests in Hungary might become more 

difficult and that more open habitat types may become more sustainable. It is also important to note 

that the lower level of modelled impacts in the lowland landscapes applies only to the natural 

landscape elements there (i.e. space covered by natural or seminatural vegetation). The vulnerabilty 

of agricultural fields or settlements can greatly differ from this pattern. 

We can be most confident in estimations if the results regarding all climate periods and climate 

models consistently suggest reliable results. This kind of consistence was experienced for all zonal 

forests and two of the grasslands, for example. Estimations should be handled with care however, 

when climate models disagree in outcome or when trends change between the two future periods. 

We did experience such patterns, as well. In such cases, future research should cover more climate 

models and wider time periods to reduce uncertainty. On the other hand, it is important to view 

uncertainty as a necessary component of any climate projections, as well as the impact assessments 

relying on them. Uncertainty should not be considered as a shortcoming of the analysis, rather as an 

informative warning that the behaviour of some objects or subsystems is less predictable. This can be 

caused by several factors, including uncertainties in the input data, a limited understanding of system 

functioning, but also can be an inherent characteristic of the object in question (in our case habitats), 

which cannot and should not be eliminated. Informed decisions need to be aware of the sources and 

magnitude of uncertainties.  

In accordance with the considerations above, we supplied estimations on PI and AC in a very 

detailed way for the NAGIS database. Most predictive distribution models used in climate impact 

studies are only evaluated at locations where the species / habitats studied are (or used to be) 

present. We also followed this convention, and used the model predictions to build PI values at 

places with existing stands of the habitat only. Similarly, AC was calculated for spatial units with 

existing stands. Therefore the data supplied are restricted to such spatial units and they support the 

answers to questions about existing stands. Regarding PI, results can be compared and custom-

weighted per habitat type, climate model, and time period, thus allowing a free choice for future 

users (e.g. to select the time span depending on the habitat/habitats in focus). AC estimations are 
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also available separately for each habitat. These can be used in a wide range of assessment of 

scientific questions and applications.  

Following the policy oriented logic of the CIVAS assessment scheme we provided an aggregated 

headline indicator to characterize the overall vulnerability of a location with respect to climate 

change. This indicator is based on maximum values: the aggregated value reflects the vulnerability of 

the most vulnerable habitat type. This setup is appropriate for broad overviews with an underlying 

“is there a risk here?” type question, whereas the more detailed map layers (PI, AC) are necessary to 

explore the specific “risks”. For those who would like to use our results in more specific scientific or 

policy contexts, we recommend to craft their own aggregation (vulnerability indicator) giving 

appropriate weights to the detailed data layers, rather than using a general, maximum-type 

vulnerability layer. There is no single “default” vulnerability layer, which could give a reliable answer 

to all possible research or policy questions. For specific questions applying to a smaller extent, expert 

decision relying on visual inspection of the PI and AC layers can be very effective, while for country-

wide assessments we suggest to develop a structured aggregation model (e.g. multi-criteria decision 

analysis, MCDA) with the involvement of all relevant stakeholders.  

There are several policy sectors where the results of a climatic vulnerability assessment on 

natural ecosystems can provide easily interpretable and relevant inputs. Major applications are 

expected in the field of nature conservation and restoration prioritisation, as well as in landscape 

evaluations. Maps from a habitat-oriented vulnerability assessment can effectively support the 

prioritisation of the different stands of a threatened habitat type for nature conservation. Locations 

which are least vulnerable to climate change are likely the ones which can be most cost-effectively 

conserved in their current state. On the other hand, high vulnerability does not mean that a stand 

should be given up by nature conservation, it rather shows that in those location a nature 

conservation action should take the form of promoting natural processes, i.e. the natural 

transformation of a stand to a less sensitive habitat or even to a habitat that endures the new 

climate better. Emphasis is on natural processes here, which can also be a target of conservation and 

may thus serve biodiversity protection, as well as ecosystem service maximisation.  

For restoration and forestry planning it is also crucial to consider the future state of the location. 

Modern restoration theory and practice is moving away from restoring past vegetation and aims at 

creating self-sustainable stands (SOMODI et al. 2012, TÖRÖK et al. submitted), which maintain 

themselves under the actual, as well as the future climatic conditions. To this end it is important at 

each studied location to identify the list of habitats that find their requirements both now and in the 

future, and least vulnerable habitats should be selected as restoration targets. For example, 

according to our results beech forests (K5_K7a) seem to be relatively inappropriate to become such 

restoration targets, and forestry decisions may have to weight in their vulnerability at places. 

However, ecosystems with natural species composition and dynamics generally need less 

maintenance efforts and provide a more balanced portfolio of ecosystem services than artificial 

green spaces, thus natural habitat types should be preferred as restoration targets wherever 

possible.  

As our analysis was designed and restricted to existing stands, our results are not fully 

informative for local restoration priorization purposes. However, the messages that emerged from 

this vulnerability analysis are useful for restoration considerations as well. Grasslands (loess steppes 
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and saline ones) that appeared to benefit from climate change in our analysis are among the 

potentially most promising (sustainable and cost-effective) restoration targets. From forests, turkey 

oak woodlands (L2a_L2b) appear to be the best candidates, because their exceptionally high AC can 

hopefully balance the negative direct impacts that even this forest type seems to face.  

Finally, landscape evaluation and landscape planning can benefit from the use of these layers. 

Any adjustment in the elements of ecological networks or green infrastructure has to consider 

whether the proposed change in the network will make it more or less vulnerable under climate 

change. Furthermore, restoration efforts may be efficiently directed to network elements with high 

vulnerability. 

Broad-scale landscape architecture, i.e. spatial planning and regional planning, and landscape 

rehabilitation may gain such information from our result that enable them to be more scientifically 

sound and to be more prepared for potential land use conflicts. Those landscape architecture and 

rehabilitation projects that are informed by our results are able to reflect more on ecological 

processes and let the decision makers cost-effectively avoid conflicts and disasters that are somehow 

connected to natural patterns and processes, including infrastructure investments on vulnarable 

areas, policy-driven land use change (e.g. afforestation), top-down designation of nature reserve 

areas, etc. Recognizing the future perspectives on PI, AC, and V of (semi)natural habitats should 

significantly and essentially alter some widely used and non-informed landscape planning strategies. 

As a general summary, we have provided detailed results for the NAGIS databases and have 

given an outlook on their potential use, while many other applications are possible. With our 

vulnerability analysis we drew the attention towards the vulnerability of Hungary’s mountain regions 

and demonstrated a possible approach to exploring the opportunities the supplied databases 

provide. Future research needs to be directed towards assessing a wider range of climate scenarios, 

time periods and habitats as well as providing detailed analysis of the PI and AC results for questions 

in the field of ecology. 
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5 APPENDICES 

Appendix 1. PI estimations for settlements in Hungary. 

Appendix 2. AC estimations for settlements in Hungary. For a few settlements near the 

Hungarian border AC estimations were not possible, these are indicated by NA (not available). 

Both appendices are supplied on a Compact Disc (CD) and are provided electronically. 
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